23 November 2008

Pendeteksian Tepi ( Edge Detection )

Deteksi Tepi

Prinsip-Prinsip Deteksi Tepi
pada suatu citra adalah suatu proses yang menghasilkan tepi-tepi dari obyek-obyek citra, tujuannya adalah :

• Untuk menandai bagian yang menjadi detail citra
• Untuk memperbaiki detail dari citra yang kabur, yang terjadi karena error
atau adanya efek dari proses akuisisi citra
Suatu titik (x,y) dikatakan sebagai tepi dari suatu citra bila titik tersebut mempunyai perbedaan yang tinggi dengan tetangganya.

Contoh:
Diketahui fungsi citra f(x,y) sebagai berikut:
1 1 1 1 1
1 1 1 1 0
1 1 1 0 0
1 1 0 0 0
1 0 0 0 0
Dengan menggunakan filter :

Maka Hasil filter adalah :
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

Untuk mencoba perhitungan di atas dapat dilakukan dengan cara manual menggunakan
perhitungan konvolusi yang telah dibahas pada bab 5, atau dengan memanfaatkan
program konvolusi.
Macam-macam metode untuk proses deteksi tepi ini, antara lain:
1. Metode Robert
2. Metode Prewitt
3. Metode Sobel
Metode yang banyak digunakan untuk proses deteksi tepi adalah metode Robert, Prewitt
dan Sobel, Gonzalez[1].

Metode Robert

Metode Robert adalah nama lain dari teknik differensial yang dikembangkan di
atas, yaitu differensial pada arah horisontal dan differensial pada arah vertikal, dengan
ditambahkan proses konversi biner setelah dilakukan differensial. Teknik konversi biner
yang disarankan adalah konversi biner dengan meratakan distribusi warna hitam dan
putih [5], seperti telah dibahas pada bab 3. Metode Robert ini juga disamakan dengan
teknik DPCM (Differential Pulse Code Modulation)
Kernel filter yang digunakan dalam metode Robert ini adalah:

Metode Prewitt
Metode Prewitt merupakan pengembangan metode robert dengan menggunakan
filter HPF yang diberi satu angka nol penyangga. Metode ini mengambil prinsip dari
fungsi laplacian yang dikenal sebagai fungsi untuk membangkitkan HPF.

Metode Sobel
Metode Sobel merupakan pengembangan metode robert dengan menggunakan filter
HPF yang diberi satu angka nol penyangga. Metode ini mengambil prinsip dari fungsi
laplacian dan gaussian yang dikenal sebagai fungsi untuk membangkitkan HPF.
Kelebihan dari metode sobel ini adalah kemampuan untuk mengurangi noise sebelum
melakukan perhitungan deteksi tepi.

0 komentar: